Telegram Group & Telegram Channel
JaxLife: An Open-Ended Agentic Simulator [2024]

Недавно вышла очередная работа на тему симуляции жизни, давайте попробуем её оценить.

"Миром" в данной работе является 2D-поле с клетками. Главным ресурсом является энергия. Каждая клетка обладает разной "плодородностью" (энергии). Агенты могут собирать энергию, терраформировать клетку (и этим увеличивать плодородность). Сама среда плавно и случайно меняется.

На поле присутствует множество агентов, передвигающихся по карте. У них есть возможность передавать друг другу "сообщения". Чтобы понять, как именно, нужно взглянуть на архитектуру каждого агента:

Каждый агент - это нейросеть: она берёт информацию об окружающих клетках, соседних агентах, своё собственное сообщение и сообщения соседних агентов. Вся эта информация кодируется разными энкодерами и подаётся в attention, после чего идёт в LSTM.

Выход из LSTM используется для генерации действий. Существуют разные виды действий - движение, еда, терраформирование, передача сообщений и другие. Все из них генерируются одновременно и независимо, т.е. не одно действие за ход. Обучаются они очень просто - если агент выбирает действие "размножиться", создаётся копия с его зашумлёнными весами.

Помимо агентов в этой среде есть ещё и роботы - они берут сообщения от двух ближайших агентов и используют их для генерации своего собственного действия. Также у них есть память, что в теории позволяет агентам "программировать" роботов.

Получилась довольно богатая среда, и авторы демонстрируют, что в ней представимы разные нетривиальные модели поведения. Чтобы измерять состояние системы, авторы вводят метрики количества агентов, средней плодородности земли, а также общее количество используемой энергии, которое они называют "Kardashev score".

Результаты по этим метрикам достаточно противоречивы. По графикам (прикреплены к посту) нельзя сказать, что "сообщества" эволюционируют в какую-то определённую позитивную сторону.

На мой взгляд, авторами среды был допущен ряд ошибок в дизайне всей работы. Зато благодаря этому я сформулировал то, по какому плану бы я развлекался с искусственной жизнью, если бы этим занимался:

1) Определяем заранее конкретные свойства "существ", которые мы хотим получить
2) Создаём минимальную среду, в которой появление этих свойств является необходимым атрибутом выживания
3) Создаём простейшую параметрическую модель, позволяющую выразить данное свойство
4) Если сходу это не получается, то берём свойства по одному и повторять пункты 1-3, постепенно двигаясь от единичных до полного набора.

Ну и, конечно, желательно перестать всё это делать в формате статей, потому что это ужасный формат для такого рода ресёрча.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/210
Create:
Last Update:

JaxLife: An Open-Ended Agentic Simulator [2024]

Недавно вышла очередная работа на тему симуляции жизни, давайте попробуем её оценить.

"Миром" в данной работе является 2D-поле с клетками. Главным ресурсом является энергия. Каждая клетка обладает разной "плодородностью" (энергии). Агенты могут собирать энергию, терраформировать клетку (и этим увеличивать плодородность). Сама среда плавно и случайно меняется.

На поле присутствует множество агентов, передвигающихся по карте. У них есть возможность передавать друг другу "сообщения". Чтобы понять, как именно, нужно взглянуть на архитектуру каждого агента:

Каждый агент - это нейросеть: она берёт информацию об окружающих клетках, соседних агентах, своё собственное сообщение и сообщения соседних агентов. Вся эта информация кодируется разными энкодерами и подаётся в attention, после чего идёт в LSTM.

Выход из LSTM используется для генерации действий. Существуют разные виды действий - движение, еда, терраформирование, передача сообщений и другие. Все из них генерируются одновременно и независимо, т.е. не одно действие за ход. Обучаются они очень просто - если агент выбирает действие "размножиться", создаётся копия с его зашумлёнными весами.

Помимо агентов в этой среде есть ещё и роботы - они берут сообщения от двух ближайших агентов и используют их для генерации своего собственного действия. Также у них есть память, что в теории позволяет агентам "программировать" роботов.

Получилась довольно богатая среда, и авторы демонстрируют, что в ней представимы разные нетривиальные модели поведения. Чтобы измерять состояние системы, авторы вводят метрики количества агентов, средней плодородности земли, а также общее количество используемой энергии, которое они называют "Kardashev score".

Результаты по этим метрикам достаточно противоречивы. По графикам (прикреплены к посту) нельзя сказать, что "сообщества" эволюционируют в какую-то определённую позитивную сторону.

На мой взгляд, авторами среды был допущен ряд ошибок в дизайне всей работы. Зато благодаря этому я сформулировал то, по какому плану бы я развлекался с искусственной жизнью, если бы этим занимался:

1) Определяем заранее конкретные свойства "существ", которые мы хотим получить
2) Создаём минимальную среду, в которой появление этих свойств является необходимым атрибутом выживания
3) Создаём простейшую параметрическую модель, позволяющую выразить данное свойство
4) Если сходу это не получается, то берём свойства по одному и повторять пункты 1-3, постепенно двигаясь от единичных до полного набора.

Ну и, конечно, желательно перестать всё это делать в формате статей, потому что это ужасный формат для такого рода ресёрча.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/210

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Knowledge Accumulator from br


Telegram Knowledge Accumulator
FROM USA